Oral Hygiene of Patients with Cancer in the Intensive Care Unit

Higiene Bucal de Pacientes com Câncer em Unidade de Terapia Intensiva

Thaináh Bruna Santos Zambranoab*; Caisa Batistac; Ana Claudia Polettoc; Nora Gavilanesd; Marcos Heidy Guskuma; Marcos Antonio do Amarala; Ricardo Sérgio Couto de Almeidaa

aUNOPAR, Center of Biological and Health Sciences. Londrina, PR, Brazil
bDepartment of Health Science, San Gregorio University of Portoviejo. Ecuador
cUEL, State University of Londrina Department of Microbiology. PR, Brazil
dTechnical University of Manabí, Department of Science Health. Ecuador

*E-mail: thainahbruna@gmail.com
Received: December 05, 2017
Approved: February 2, 2018

Abstract

Dental care in Intensive Care Units - ICU, plays an important role in maintaining the health and well-being of critically ill patients. Although infection is a frequent manifestation in Intensive Care Unit (ICU) patients, the risk of infection by the oral cavity should also be considered. The immune response of this patient may be compromised, and consequently latent infections may intensify. The mouth is considered an ideal microbial incubator because of its characteristic of pH, presence of nutrients and hard surfaces. The relationship between periodontal disease and systemic conditions, including lung infections, is being explored. This study had the purpose of evaluating the odontology conditions in hospitalized patients with cancer in an intensive care unit at the Cancer Hospital of Londrina - Paraná, Brazil, quantifying the oral microbiota and evaluating bacterial resistance. Inclusion criteria involved critical patients of both sexes, two male and two female, ranging from 40 to 80 years old, submitted to mechanical endotracheal breathing. The presence of visible biofilm and xerostomia were the most prevalent. The results obtained are three patients who presented Klebsiella pneumoniae producer of Carbapenemase, due to the oral hygiene deficiency in patients hospitalized in the ICU, which are responsible for major systemic complications, increasing hospitalization time.

Keywords: Intensive Care Units. Klebsiella pneumoniae. Oral Health.

1 Introduction

Cancer is fundamentally a genetic disease that alters cellular information, invading tissues and different organs1. Patients hospitalized with cancer have a compromised clinical status, presenting changes in the immune system, exposure to invasive procedures, therapeutic dehydration, which leads to xerostomia. Self-care impossibility favors the oral hygiene precariousness, leading to imbalance of the resident microbiota, with consequent increase in the possibility of acquiring several infectious diseases, compromising the patient’s overall health2.

The Intensive Care Unit - ICU is a suitable environment for patients with severe condition with survival chances, who require constant monitoring (24 hours) and much more complex care than other patients. However, this place is subject to infections, mainly respiratory infections, intubated and ventilated patients are at high risk of infectious complications in this context3.

In patients hospitalized with mechanical ventilation, the endotracheal tube is an essential interface between the patient and ventilation apparatus, but inadvertently also it facilitates the development of ventilator-associated pneumonia - VAP due to presenting the pulmonary host defenses. As eries of investigations suggest that bacteria that colonize the oral...
cavity may be important in the VAP etiology³.

Hospital dentistry is a dental specialty that aims to perform care and oral procedures in a hospital environment. The first dental services established in a hospital took place in 1901, at the General Hospital of Philadelphia, and had as function the patients’ dental care and the students’ training of the area⁵.

The development of Hospital Dentistry emerged in America, from the mid-nineteenth century onwards with the commitment of the Doctors Simon Hullihen and James Garrestson. A major effort was needed so that the Hospital Dentistry could be recognized. Hospital dentistry encompasses actions that go beyond the imagined and attributed proportions by the population, since the procedures performed do not only concern surgical interventions, but one should keep in mind the patient’s approach as a whole and not only in the aspects related to the Care of the oral cavity. Oral health, as a state of harmony, normality or the mouth hygiene, has meaning only when accompanied, to a reasonable degree, by the individual’s general health⁶.

Hospital dentistry can be defined as a practice that aims to care for oral disorders that require procedures of multidisciplinary teams of high complexity to the patient, promoting preventive, diagnostic, therapeutic and palliative actions in oral health performed in a hospital environment in harmony with the hospital mission and inserted in the context of the multidisciplinary team⁷. Integrated dentistry at the hospital allows a better performance in the commitment to patient care where the dentist’s participation at the ambulatory level has the objective of collaborating, offering and adding more strength to what characterizes the new hospital identity².

In 2008, the Law nº 2776/2008, presented by Neilton Mulim Costa, obtained a favorable opinion both by the Social and Family Safety Committee in 2012, as well as by the Constitution and Justice and Citizenship Committee. This law required the presence of the dental surgeon in the Intensive Care Units - ICU and also in clinics or public and private hospitals in which patients are hospitalized, so that they can receive oral health care⁸.

Microorganisms found in the oral cavity in hospital environment are the groups streptococci viridans, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus spp., Klebsiella pneumoniae, and Candida spp⁹.

Pneumonia associated with mechanical ventilation - PAMV is a pulmonary infection that occurs 48 to 72 hours after endotracheal intubation and the institution of invasive mechanical ventilation, which may cause increased morbidity, mortality, length of stay and costs¹⁰.

Among the main measures to reduce the incidence of PAMV, prevention through oral hygiene associated with the use of chlorhexidine 0.12% mouthwashes is recommended¹¹. The use of chlorhexidine 0.12% is the standard protocol of oral hygiene used in an ICU, being a microbial agent of wide spectrum presenting activities against gram-negative bacteria and has no side effects for patients¹².

Implementation of oral health care protocols to reduce risks of systemic diseases and hospital infections is of great importance for public and private health. Simple measures such as brushing patients’ teeth twice a day and using oral antiseptics show a reduction in the patients’ mortality and morbidity in ICUs, however, the patient should be distinguished according to his / her clinical condition so that the appropriate protocol is used. Conscious or intubated patients differ both in the microbial colonization type of the buccal cavity and in the therapy to be used¹³.

The objective of the present study is to address the dental conditions in cancer patients admitted to the intensive care unit by quantifying the oral microbiota and evaluating bacterial resistance.

2 Material and Methods

2.1 Inclusion criteria

The project was subjected and approved by the Research Ethics Committee with Human Beings, of Unopar (Process nº. 82/2015).

Inclusion criteria included critical patients of both sexes (two males and two females) ranging in age from 40 to 80 years, submitted to mechanical endotracheal respiration and systemic disease, hospitalized in the Intensive Care Unit of the Cancer Hospital of the municipality of Londrina (HCL), Paraná. The participants were subdivided into two groups: 1 edentulous (total) and 3 dentate (with at least 3 teeth).

2.2 Oral Hygiene

The hygiene technique used in this study was according to the protocol of the manual of hospital of odontology¹³. The patient’s position at the time of oral hygiene was 30°, avoiding aspiration pneumonia. An extra soft infant toothbrush was used, head 27, manufacturer DentalClean Londrina- PR. A non-alcoholic solution of chlorhexidine 0.12% manipulated by Odontofarma, Londrina- PR, was sprayed in the oral cavity (± 1ml¹ per patient).

Before and during the procedure, a sucker was connected to the hospital vacuum system, suctioning in the oropharynx region, performing the following movements: friction of the vestibular and jugal mucous in the postero-anterior, palate in the postero-anterior, vestibular, lingual and occlusal surfaces of the teeth and the region of the orotracheal tube¹⁴.

2.3 Samples collection

Three collections were performed for 24, 48 and 72 hours with sterile universal collectors - Swab, the first collection was performed without hygiene to quantify the patients’ oral bacteria.. The second collection was performed after the nursing team orientation of the CHL to perform the cleaning of the buccal cavity three times a day and the third collection was performed after the hygiene by the dental team (Figure 1).
2.4 Isolation and bacteriological evaluation

The collected saliva samples were serially diluted (1:10) in NaCl 0.85% and plated on blood agar medium 5% for 48 hours at 37 °C for identification of gram-negative bacteria (Figure 1). After counting the colony forming units, the microorganisms were isolated, identified and evaluated by antibiogram (Figure 1).

3 Result and Discussion

At Table 1 the characteristics and inclusion criteria of the patients used in this study are presented. It is observed that among the 4 evaluated patients, according to their oncological characteristic, patient A presented a tumor of tongue base, B Neoplasia of Larynx, C Tumor in phase of metastasis reaching Intestine, Marrow and Lung and D Cervix Uterine Neoplasia.

Table 2 – Bacterial growing and cell characteristics.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growing</td>
<td>1</td>
</tr>
<tr>
<td>Cell type cocci</td>
<td>X</td>
</tr>
<tr>
<td>Cell type bacillus</td>
<td>X</td>
</tr>
<tr>
<td>Gram-negative</td>
<td>X</td>
</tr>
<tr>
<td>Gram-positive</td>
<td>X</td>
</tr>
</tbody>
</table>

Source: Research data.

According to Table 2, the collection in 24 hours presented 1,100 Colony Forming Units (CFU ml⁻¹) with bacterial growth between the dilutions (1:7).

In the second collection, 48 hours after sanitization, performed by the Nursing team obtained the average of 1,050 CFU ml⁻¹ with bacterial growth between the dilutions (1:7) and the presence of fungi in a patient because he was using superior total prosthesis, and a lower removable partial prosthesis.

At the last collection, 72 hours after hygiene, performed by a team of dentists, it was obtained 430 UFC ml⁻¹ with bacterial growth between the dilutions (1:4). Showing that a good oral hygiene performed by a team of dentists and with suitable materials usage, such as chlorhexidine 0.12%, according to the meta-analysis study carried out by Villar et al.7 significantly reduces the microbial load, and probably the patients’ morbidity and mortality.

The antibiogram evaluated the resistance of gram-negative bacteria to antibiotics such as MER 10, CAZ 30, AMC 30, IPM 10, ATM 30, CFL 30, CPM 30, CTX 30.
For the saliva samples from the 4 patients, the bacterium *Klebsiella pneumoniae* producer of Carbapenemase resisted to all antibiotics used. It should be mentioned that after the study, the patients died, with medical report associated to pneumonia. In a study carried out by Mohanty et al., in intubated patients in India, it is mentioned that demographic profiles such as patients’ age, gender and underlying primary disorders do not affect the development of pneumonia. Furthermore, Mohanty comments that most of the isolated microorganisms were resistant to the antibiotics usually used, as in this study. Therefore, early diagnosis of pneumonia associated with mechanical ventilation through antibiogram and initiation of appropriate antimicrobial treatment is vital to avoid adverse outcomes.

Educational and preventive activities carried out by the dentist surgeon in the hospital environment are efficient to improve the oral hygiene standards of hospitalized individuals without limitations for self-care. ICUs patients present deficient oral hygiene, with a significantly higher amount of biofilm than individuals living in society, and the quantity and complexity of oral biofilm increases with the length of hospital stay. It is expected that the results obtained with this study can guide the planning of actions in oral health, aiming to integrate the Dentist in the multidisciplinary team in the hospital environment.

4 Conclusion

The presence of biofilm and xerostomia was the most prevalent alteration. It is inferred that according to the obtained results, all patients presented the bacterium *Klebsiella pneumoniae* producer of Carbapenemase. Thus, poor oral hygiene in these patients may have been responsible for increased length of hospital stay and mortality.

References

2. Toledo GB, Cruz Isabel C. The importance of the oral hygiene in Intensive Care Unit as a way of prevention of nosocomial infection-Sistematic Literature Review. JSNursing Care 2009; 2: 1.